
the error g v is within the error of the direct problem. The results of the numerical ex- 
periments show that the error of the determination of combustion front velocity is only 
slightly greater than the error of the initial data - particularly in regard to the model 
parameters pc, k, Zin, Zex, T, ~ -- and that it increases somewhat with an increase in v. 

NOTATION 

s, width of the combustion front; v, velocity of the combustion front; ~, time; c, 
heat capacity; p, density; k, thermal conductivity; T, temperature on the combustion front 
in the resevoir; ~max, time of attainment of the maximum temperature at a given point of 
the region; gx, error of measurement of ~max; Ev, error of determination of velocity v; Pc, 
Peclet number; Nu, Nusselt number; Fo, Fourier number. 

i, 
2. 
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OPTIMUM PLANNING OF EXPERIMENTS IN THE IDENTIFICATION 

OF HEAT-TRANSFER PROCESSES 

E. A. Artyukhin UDC 519.24 

An analysis is made of problems involving the optimum planning of nonsteady- 
state experiments conducted to identify thermal processes in structural mater- 
ials and elements. 

In mathematical models used for the theoretical analysis of the thermal operating con- 
ditions of different materials and structures, it is possible to distinguish three inter- 
connected parts: i) internal heat transfer; 2) he~t transfer on the surface interacting 
with the environment; 3) applied thermal loads. Each of these components of the overall 
model is usually written approximately with allowance for the main governing factors, and 
each usually contains several characteristics. Identification methods, based on the solu- 
tion of inverse heat-conductionproblems, have recently begun to be widely used to deter- 
mine these characteristics. 

As an example, we will examine a unidimensional process involving the unilateral heat- 
ing of a structural elementwith allowance for radiation from the heated surface. The mathe- 
matical model of the process has the form 

C(7') OT - 0 ( --Ox O@x ) + S ( T ) '  O < x < b '  O < X < T m '  

T(x, O)= To(x), O<~x<~b, 

OT (O, "~) _ O, 
Ox 

qx (x) = - -  k (T (b, x)) OT (b, x) = q (~) _ ~ (T) ~T~. 
Ox 

Equation (i) describes internal heat transfer in the material of the structural ele- 
ment and contains the characteristics C(T), k(T), and S(T). Heat balance equation (4) es- 
tablishes the model of heat transfer on the surface of the structure which interacts with 
the environment, and it includes the characteristic e(T) and the thermal load q(~). Here, 
the value of q(x) can be determined by calculation [2]. The characteristics C(T), k(T), 

(1) 

(2) 

(3) 

(4) 
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S(T), and e(T) may be known with a very low accuracy or may be completely unknown. In such 
a case, the problem arises of identifying them, with a known thermal load q(T), from the re- 
suits of measurement of temperature as a function of the thrmal state inside the structure 

T(Xi ,  T)=: f i (~) ,  i =  I, N, ( 5 )  

where N is the number of measurement points. 

In the general case, there is no unique solution for the entire set of characteristics 
from the solution of inverse problem (1)-(5). We must therefore resort to decomposing the 
thermal system being analyzed into discrete subsystems. In particular, we first need to 
determine the characteristics of internal heat transfer C(T), ~(T), S(T) [3]. Here, model 
(4), describing the thermal interaction of the structure with the environment, is excluded 
from consideration as a result of the measurement of a boundary condition on the boundary 
x = b. This boundary condition might be of the second type, for example 

- -  X (T (b, ~)) OT (b, x) q (x), (6) 
Ox 

where q(x) is the thermal load on a subsystem in which internal heat transfer is taking 
place. 

We then determine the characteristic e(T) with known characteristics C(T), %(T), and 
S(T) [4]. More complex phenomena [5] may take place on the heated surface, and in this 
case it will be necessary to determine several characteristics [6]. 

The inverse heat-transfer problem can be represented in the form of the operator equa- 
tion 

Au = [, ( 7 )  

where A is a nonlinear operator constructed on the basis of the heat-transfer model being 
analyzed; u is the vector of the unknown charactersitics; f = {fi(~)}1N is the vector func- 
tion of the measurements. 

The model of state and, thus, the operator A depend on several quantities which deter- 
mine the conditions of the experiments. These quantities include the geometric parameter 
b, the time of the experiment Tm, the initial temperature distribution T0(x), and the ther- 
mal load q(~). We combine these conditions into the vector w = {b, ~m, T0(x), q(~)}. The 
operator A also depends on the scheme of temperature measurement ~ = {N, X}, where X = {Xi}l N 
is the vector of the coordinates of the location of the thermocouples. The vectors w and 
together comprise a factorial experiment 

~:: {~, U. (8) 

An important problem in identifying heat-transfer characteristics is optimum experi- 
ment planning, which amounts to selecting a factorial experiment (8) that will ensure maxi- 
mal accuracy in the determination of the characteristics of the process being examined [7]. 
The search for the optimum factorial experiment leads to the solution of the extremal prob- 
lem 

ao = Arg max ~t r (~), ( 9 )  

where ~(~) is a criterion of the quantity of the experiment, characterizing the accuracy of 
the solution of the inverse problem; H is the set of the possible plans. 

In solving inverse problems involving determination of temperature-dependent character- 
istics, it is customary to parameterize the sought functions with the use of a prescribed 
system of basis functions, such as B-splines [8]. As a result, the inverse problem is re- 
duced to the determination of the vector of the coefficients of an approximation p of a 
certain dimensionality m. In this case, the criterion of the quality of the experiment is 
constructed on the basis of the information matrix [7] 

where 

M (a):.-- {cl)x~, ], k = 1, m}, (io) 
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(!',~ = A- 7- . - .  ~ x~ (~) ~j (X~, "c) ~h (X~, "0 &; 
i I 0 

K$(~), i = !, N are functions accounting for information on the measurement errors; 8k(X, 
�9 ), k = I, m are sensitivity functions. The set of possible factorial experiments should 
consider the restrictions imposed by the use of specific experimental equipment in the 
realization of temperature experiments. For example, in seeking to'find the optimum ther- 
mal load within a prescribed range q ~ Q, it is often necessary to consider the restrictions 

% ~ q ( ~ ) ~ - ~ ,  %=~ dq/d~-~--~-O~, ( 1 1 )  

which determine the energy capabilities of the experimental unit. Other restrictions can 
also be formulated. 

In the general case, extremal problem (9), involving determination of all components 
of the factorial experiment (8), does not have a unique solution. Investigators usually 
analyze measurement-planning problems individually and select optimum boundary and initial 
conditions [9, I0]. Combined formulations of factorial experiments are also examined [ii, 
12]. Here, due to the nonlinearity of the inverse problem r it may be possible only to 
search for locally-optimum factorial experiments whose construction requires the assignment 
of a priori information on the characteristics being identified [13]. 

Practical use of factorial experiments requires analysis of severalquestions related 
bothtothe formulation of an extremal problem of type (9) and the development of algorithms 
for itsnumerical solution. First of all, it is necessary to substantiate the approach taken 
toward designation of the criterion of the quality of the experiment. Unfortunately, none 
of the criteriaused [7] in the theory of factorial experimentation fully reflects the spe- 
cific features of inverse heat transfer problems. It is thus necessary to prove the fitness 
of the chosen criterion, ~such as through computational experiments which simulate the identi- 
fication procedure. Such an analysis was conducted in [14]. 

Formulation of the extremal problem in a factorialexperiment requires careful analysis 
of all experimental conditions and measurements in order to isolate those which turn out to 
have a significant effect on the chosen quality criterion. Computational experiments can 
also be used for this purpose. We will examine this problem using the example of the prob- 
lean of identifying the integral emissivity E(T) from conditions (1)-(5). The algorithm for 
the solution of the inverse problem for this case follows from [4]. The same study pre- 
sented the initial data we will use. 

Determination of the vector of the coefficients e = {ek}1 m, approximating the character- 
istic E(T) of the cubic B-spline, reduces to the solution of the system of equations 

where 
He = d, ( 1 2 )  

m 

H = {hjh, ], k = 1, m}; 

~m 

hi h [ (~z 8 ( = T~ pj (T~,,) ~k (T,~,) dx; 
0 

T ~  

d~ = .i' (q~ (r - -  q (r ,~ (T~) de; 
0 

where o is the Stefan-Boltzmann constant; Tw(~) and qk(T) are the temperature of the sur- 
face and the incident heat flux, determined from the solution of the inverse boundary-value 
problem [15]; ~k(Tw), k = ,~ are basis B-splines. The matrix H is the information matrix 
of the system, while detH can serve as the criterion of the quality of the experiment [16]. 
We performed calculations in which we evaluated the effect of elements of the experiment on 
the criterion when they were varied according to the law 

& = k~ ~, k~ 6 [0,5; L51, 

w h e r e  i n d i v i d u a l  e l e m e n t s  o f  t h e  e x p e r i m e n t  w e r e  a l t e r n a t e l y  e x a m i n e d  a s  a .  The r e s u l t s  o f  
t h e  c a l c u l a t i o n s  a r e  shown i n  F i g .  1 and  i l l u s t r a t e  t h a t  t h e  q u a n t i t i e s  q ( z ) ,  ~m, and b h a v e  

~8 
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Dependence of the quality 
criterion (det H) on the experimen- 
tai conditions: i) q(~); 2) ~m; 

a significant effect on the values of the criterion. At the same time, the initial tempera- 
ture distribution T0(x) has almost no effect on the criterion and should be excluded from the 
experiment. 

The solution of factorial thermal experiments entails the numerical solution of complex 
extremal problems of the type (9). In these problems, the quality criterion ~ is constructed 
using the solutions of boundary-value problems for equations in partial derivatives (1)-(4), 
while restrictions such as (ii) may be placed on the sought functions. To solve such prob- 
lems, it is necessary to develop the corresponding algorithms and programs. Since the qual- 
ity criteria of the experiment may not have convexity properties [7], then algorithms and 
programs should make use both of methods for searching for the global optimum of nonconvex 
functionals (such as the scanning method [17]) and gradient methods of optimization for 
convex quality criteria (such as the gradient projection method [18]). 

Finally, there is a broad range of questions related to analysis and generalization of 
locally optimum experiments obtained in cases where the initial data is fairly indeterminate. 
This indeterminateness stems mainly from the need to assign a priori information on the char- 
acteristics being identified. It also has to do with the indeterminateness and relatively 
large errors in the reproduction of the thermal loads. If only locally optimum experiments 
can be conducted, then successive factorial experiments must be set up [13]. There have been 
almost no such investigations in regard to the identification of heat-transfer processes, 
and, in the interest of future generalizations, it would be most expedient to conduct these 
studies for individual classes of problems. 
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IDENTIFICATION OF TWO-DIMENSIONAL HEAT FLOWS IN ANISOTROPIC 

BODIES OF COMPLEX FORM 

V. F. Formalev UDC 5 3 6 . 2 4 5 . 2  

A method is proposed for numerical determination of two-dimensional tempera- 
ture fields in anisotropic bodies with an arbitrary boundary for use in ,co- 
efficient inverse heat-conduction problems. 

In solving coefficient inverse heat-conduction problems, it is necessary to first 
evaluate the temperature field on the basis of approximate thermophysical characteristics 
(ARC). The availability of suitable methods and application packages makes it possible, 
by varyin~ the approximately assigned ATC, to establish the empirical temperature fields 
that will be used in determining the sought ATC. 

Here, weexamine the formulation the numerical so_~ution .of two-dimensional nonlinear 
proble/ns of heat conduction in anisotropic bodies in which complex heat transfer is taking 
place. Without simplications~, the method makes it possible to identify full-scale tem~pera- 
ture fields that are then used to determine the principal components 16 , lq of the thermal 
:conductivity tensor. 

The mathematical model has the following form (Fig. I): 

0T 
c ( r )  p 0~ = div  (A grad T);  ( 1 )  

(-~-~).n(lel--lw*)--AgradT/~l--e~1~ 

f o r m  

(2 )  

aw2 (T,~ - -  T~2) + A ~ a d  T/w2 - -  etoo. oT~2 = 0; ( 3 )  

T(r, O, x)= T~3(r, x); T(r, ~, T ) =  Twi(r, x); ( 4 )  

r (r, 0, o) = ~ (r, 0).  ( 5 )  

In ,curvilinear coordinates, the components of the thermal conductivity tensor have the 

~,, = ~. (T) cos z (0 v - -  tp) -b  ~,n (T) .s in  z (O v - -  ~) ;  

;%0 = ~,~ (7)  s in  2 (0 ~ _ ~)  + ~.n (T) c0s z (0 ~ - -  ~) ;  

L,o --=- ~,o, = [;% (73 - -  ;~t (T)[ s in  (0 v - -  ~)  cos (0 v - -  ~),  

where 9 = 1 for curvilinear coordinates and ~ = 0 for cartesian coordinates. 

In solving boundary-value problem (1)-(5), we encounter the problem of allowing for 
the oblique derivative at the boundary wl in boundary condition (2) and Itsrelationshi~ 
with the behavior of the boundary rwl = f(8). 

After projecting the balance (2) in the direction of a normal to the boundary wl,, the 
author of [I] obtainedthe following representation of the heat flux normal to the houn~y 
wl: 

(6) 
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